Fire And Overheat
1. What is the purpose of    if overheat <=0 { overheat=0 }   ?

Make sure that overheat doesn’t go below zero.  It it did, it could take a long time for it to reach 90 again…  no saving up on overheat time!
2. Describe in words what causes the gunner to stop firing due to an overheating. 

When the heat is above 75, the overheat variable builds up.  If overheat gets to 90, the gun overheats.  When heat is 75 or below the overheat drops back down to zero.
3. T/F:  The gunner has a heat over 75 for 2 seconds, then spends 1 second under 75, , then spends 1 second over 75... is the gun going to 'overheat' ?   

No.  2 seconds above give 60 overheat. 1 second below drops overheat to 30.  1 second above raises overheat to 60.  No overheating until 90…
4. You want to add code that would play a sound to warn the user when they have one second left before the gun is shut down due to overheating. Where and what code would you add?

in the step, add
if overheat > 60 {  sound_play(warning)  }
[60 is one second away from becoming 90!]

Keyboard Moving
1. Consider the first if / else if section.  If the player was holding down the right arrow key and the left arrow key at the same time, what would the player object do?

The player would move right since this is the first condition that will be true and the other conditions are ignored because they are else ifs.
2. How would you modify this first section of code so that holding the left and right arrow keys together result in a player that doesn't move?

You could add in
if keyboard_check(vk_left)=true and keyboard_check(vk_right)=true {
   speed=0
}

3. In some games you want the player to stop moving when the arrow keys are not being pressed.  How is this accomplished in this example?

the long line that checks if the key presses are all false. 

4. Consider the line 
if keyboard_check(vk_up)=false and keyboard_check(vk_left)=false and 
keyboard_check(vk_down)=false and keyboard_check(vk_right)=false { speed=0 }
If the 'and' statements are changed to 'or' statements, how will the behaviour of the player change.

if any of the keys are unpressed the player would stop.  This is bad.
FirePower
1. This code uses the keyboard_check method.  How is it different from the keyboard_check_pressed method?

keyboard check tells you if the key is currently held down.  Keyboard check pressed tells you if the key was actually pressed in the current step.

2. Explain what role the line  bid.speed = pow/5 has in this code.

the higher the power, the more speed the missile will have.
3. What is the fastest speed a missile could be fired at?

since the largest value of pow is 100, the fastest speed is 100/5 = 20.
4. What does the last parameter in the draw_rectangle method do?

whether or not the rectangle is solid or just the border of a rectangle when drawn
5. What role does the firestate variable play in this challenge? 
(If we took the firestate variable out of the code, how would the program change?)

it prevents the power from changing or another missile being fired after a missile has just been launched.
6. Changing firestate back to 0 is not shown on the code sheet.  When would you change the firestate back to 0 ?

we would change it back when the missile in the air is destroyed.  Now we can fire another one.

Mouse Selecting and States
1. Explain how the destx, desty, and state variables work together.

when the state is 1, bones will move towards destx, desty.
when the mouse is right clicked, a selected bones will set its destx, desty to the mouse location.
2. What condition sets the state variable back to zero?

moving within 5 pixels distance of the destx,desty.
3. Consider Bones-> Step.  We find out the distance to destx,desty.
Why not just do a simple check    if x=destx and y=desty  ?

4. The code sheet shows bones->mouse right pressed .
Should this be a press on a Bones or a global mouse right press?

global mouse click.  The destination will be somewhere far away so it has to be a global click.
5. Why did we create and use a the global.busy variable?

in this particular program we did not want the user to be able to pick up more than one rock at a time.  Global busy keeps track of whether or not we are busy moving a rock already when left click on other rocks.
6. Currently a Rock cannot be dropped on top of another Rock. 
How would you modify the code so that Rocks cannot be dropped on Rocks OR Bones ?

else if state=1 and instance_place(x,y,obj_rock) <0 and instance_place(x,y,obj_bones)<0 { ok to drop }

7. Consider the Rock -> Step event. 
How would you modify the code so that a Rock cannot be dragged over another Rock ?

if state=1 and instance_place(mouse_x,mouse_y, obj_rock)<0 {
   x=mouse_x
   y=mouse_y
}

Projectile_Gravity
1. T/F:   global.wind is the actual, real-time value of the wind that affects the ball.

2. T/F:   global.wind will change value every step of the program.
not if it equals the target wind
3. T/F:   cos will help you determine the upward/downward component of direction.

4. T/F:   firing an object upward will give the object a negative value for its  y velocity.
upward is approaching zero (decreasing values), so negative is correct.
5. T/F:   wind affects vx and gravity affects vy.

6. Many of you originally coded the affects of wind using the line
vx = vx + global.wind
Describe how this affected the ball and why this isn't a good implementation of wind.

The wind keeps adding x velocity to the ball.  It will keep picking up speed! This is wrong.  The ball should only increase speed until it reaches the same speed as the wind.
Space Gravity Relative Motion
1. Consider firing the laser.  What are hspeed and vspeed?

hspeed is gamemakers built in variable for our variable vx
vspeed is gamemakers built in variable for our variable yv
2. Why is image_angle involved in deciding how to change the vx and vy of the ship?

we want to add motion to the ship in the direction the ship is facing.  So we don’t just add a known number to vx and vy.  We need the component of 0.10 that is in the x and y direction. You need to use sin and cos of the image_angle for this.
3. What does the 'degtorad' method do?  Why do we have to use it?

sin and cos require an angle number in Radians.  Degtorad will convert our image_angle (in degrees) into radians.
4. If the ship was 100 pixels away from the planet, what would be the value of the gravitational 'pull' variable ?

100*100 is 10000.  1000/10000 is 0.1  .  the pull would be 0.1
5. What is one advantage to creating a variable called 'turnRate' in the ship?
If you want to quickly change the turnRate, you can change it in one single place that is easy to find and the change will affect the entire program.
6. Assume that the ship is moving towards the right and facing upward.
The player presses the up arrow.
How will the vx variable change?    Won’t change.
How will the vy variable change?    More negative value.
