Game Programming Course
Lv05_L03 – More About Conditional Statements
Reading 01
The Basic Operators
When using conditional statements (if statements) you can use the following operators. The phrases between the { } are just there to help you.

equal to:

if age=16 { ...you are 16... }

less than:

if points<3 { ...bad score! 2 and below will work... }

greater than:

if age>100 { ...you are really old, over 100 will work... }

less than or equal to:

if x<=500 { ...500 or lower will work...}

greater than or equal to:
if points>=1000 {...1000 or higher will work...}

not equal to:

if choice!=2 {...if choice doesn't equal 2...}
In many other programming languages you HAVE TO use (and) around your conditional statement like below. In GameMaker script this is optional. We'll start to use this syntax here and there depending on how complex the condition gets in our code.

if (age>10) {...do code...}

if (points!=1000) {...do code...}

if (shields>=20) {...do code...}
(continue on next page...)
If and Else
Sometimes when you test a condition you want to do some code if the condition is true and do some other code if the condition is false. You can use the if and else statements.

	if score>=50 {

 show_message(“Pass”)

}

else {

 show_message(“Fail”)

}
//more code
	If the score if 50 or higher, 'Pass' is shown and the 'else' part is ignored. Code continues on at 'more code'.

The else is only performed when the condition score>=50 is false. Else means 'otherwise do this'. The code in the else statement will run when score is 49 or lower.

It's important to notice that when you use an 'else' statement you are guaranteeing that some code will run!

The else statement is great for a 'do this or else do that' situation.

	if score<50 {

 show_message(“Fail”)

}

else {

 show_message(“Pass”)

}

//more code
	This example will have the exact same results as the example above. We just wanted to show you that there is often more than one way to write conditional statements.

	if shields=1 {

 life=life-2

}

else {

 life=life-10

}

	If the shields variable is equal to 1, the player has shields on and the damage will be less. Otherwise more life is taken away from the player.

	if speed=4 {

 speed=8

}

else {

 speed=4

}
	more on next page!

Lets say the player can hit the “S” key to toggle their speed from 4 to 8 to 4 to 8 to 4 to 8 to . You could put this code into the “Press S Key” event. Pretend the speed is 4, it will change it to 8. Pretend the speed is 8, it will change it to 4. Awesome!

	if speed=4 {

 speed=8

}

if speed=8 {

 speed=4

}

	Warning! Warning!

The code to the left attempts to toggle speed but it has a problem. Can you find it?

When the speed is 4, it changes to 8. But then the next if statement runs and since the speed is now 8, it changes the speed back to 4. Oops. Should have used an else statement like the example above!

If and Else If
When your if statement turns out to be false, you can continue asking more if statements using the else if statement. The else if only executes when the if statement above it turns out to be false.
	if score>=100 {

 show_message(“Awesome!”)

}

else if score>=80 {

 show_message(“Good!”)

}

//more code
	If you get 100 or more, awesome is shown and the code jumps down to 'more code', ignoring the else if statement. If you're not 100 or more, the code will check the else if statement to see if you are 80 or more. If this statement is true, it will show good.

Notice that there is no guarantee that any message will print out. If you have a score of 50, nothing happens.

	num = irandom_range(1,3)

if num=1 {

 sound_play(beep)

}

else if num=2 {

 sound_play(buzz)

}

else if num=3 {

 sound_play(wham)

}

else if num=4 {

 sound_play(woop)

}

	You can make your if, else if chain as long as you like.

Later in the course you will learn more efficient ways to organize your code to avoid super long chains of if statements.

	if life<10 {

 sound_play(dangerSound)

}

else if life<30 {

 sound_play(warningSound)

}

else {

 sound_play(regularSound)

}

	You can add an 'else' onto else if chains. This will guarantee that some code is executed. In this example, the regular sound is guaranteed to play if the first two sounds don't.

	if life<30 {

 sound_play(warningSound)

}

else if life<10 {

 sound_play(dangerSound)

}

else {

 sound_play(regularSound)

}

	Warning, Warning, Warning!

When you use else if's, the order that you check values is important!

In this example, a life equal to 7 will trigger the warning sound to play (since it is less than 30!) and never check the remaining statements. Be careful to order the checks so that they work all the time.

AND and OR
Sometimes you want to perform several checks with one if statement. You can use the symbols && for AND and the symbols || for OR. The || symbols are located near the enter key (shift-\).
When you use &&, both parts of the condition must be true to make the if statement execute. When you use the ||, only one of the parts of the condition must be true.
	if score>=1000 && life=100 { next level }
	To go to the next level, the score has to be 1000 or more AND the life must be equal to 100. Both parts must be true.

score=500, life=50 code doesn't runs

score=1100, life=50 code doesn't runs

score=500, life=100 code doesn't runs

score=1100, life=100 code runs

	if score>499 || money>9999 { code }
	Only one of the conditions has to be true. If score is larger than 499 OR the player has more than 9999 dollars.

score=600, money=200 code runs

score=200, money=12000 code runs

score=600, money=12000 code runs

score=200, money=200 code doesn't run

	if age>=15 && iq>79 && hasCar=1 {code}
	You can link as many conditions as you want with the && or || symbols. All three parts would have to be true for the code to execute.

	if score>=10 && score<=20 { code }
	A typical way to check between a range of numbers. The statement is true when score is anywhere from 10-20.

	if level=5 {

 if lives>=3 {

 show_message(“Very good!”)

 }

}

if level=5 && lives>=3 {

 show_message(“Very good!”)

}

	Both code segments accomplish the same job.

Notice how the second code segment is easier to read (hopefully!) and shorter.

There are often several ways to code a task. With practice you will learn the shorter, easier to read way.

	if (x>500 && y>500) || (points>1000)
	You can even use parentheses () to determine order or operations and mix && and || statements.

